Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Journal of Traditional Chinese Medicine ; (12): 103-112, 2024.
Article in Chinese | WPRIM | ID: wpr-1005118

ABSTRACT

ObjectiveTo develop traditional Chinese medicine (TCM) formulae for the treatment of nonsevere coronavirus disease 2019 (COVID-19) and to explore its anti-inflammatory mechanism. MethodsThe dysregulated signaling pathways were determined in macrophages from bronchoalveolar lavage fluid of COVID-19 patients and in lung epithelial cells infected with SARS-CoV-2 in vitro based on transcriptome analysis. A total of 102 TCM formulae for the clinical treatment of nonsevere COVID-19 were collected through literature. The pathway-reversing rates of these formulae in macrophages and lung epithelial cells were evaluated based on signature signaling pathways, and the basic formula was determined in conjunction with TCM theory. The commonly used Chinese materia medica for nonsevere COVID-19 were summarized from the 102 TCM formulae as abovementioned. And together with the screening results from the Pharmacopoeia of the People's Republic of China, a “Chinese materia medica pool” was esta-blished for the development of TCM formulae for COVID-19. The regulatory effects of each herb on signaling pathways were obtained based on targeted transcriptome analysis. Oriented at reversing dysregulated signaling pathways of COVID-19, the calculation was carried out, and the artificial intelligent methods for compositing formulae, that are exhaustive method and parallel computing, were used to obtain candidate compound formulas. Finally, with reference to professional experience, an innovative formula for the treatment of nonsevere COVID-19 was developed. The ethanol extract of the formula was evaluated for its anti-inflammatory effects by detecting the mRNA expression of interleukin 1b (Il1b), C-X-C motif chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 2 (Ccl2), nitric oxide synthase 2 (Nos2), and prostaglandin-endoperoxide synthase 2 (Ptgs2) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RAW264.7 cells treated with lipopolysaccharide (LPS). ResultsIn macrophages and lung epithelial cells, 34 dysregulated signaling pathways associated with COVID-19 were identified respectively. The effects of the 102 formulae for clinical treatment of nonsevere COVID-19 were evaluated based on the dysregulated signaling pathways and targeted transcriptome, and the result showed that Yinqiao Powder and Pingwei Powder (银翘散合平胃散, YQPWP) ranked first, reversing 91.18% of the dysregulated signaling pathways in macrophages and 100% of the dysregulated signaling pathways in lung epithelial cells. Additionally, YQPWP had the function of scattering wind and clearing heat, resolving toxins and removing dampness in accordance with the pathogenesis of wind-heat with dampness in COVID-19. It was selected as the basic formula, and was further modified and optimized to develop an innovative fomula Qiaobang Zhupi Yin (翘蒡术皮饮, QBZPY) based on expert experience and artificial intelligence in composing formulae. QBZPY can reverse all the dysregulated signaling pathways associated with COVID-19 in macrophages and lung epithelial cells, with the reversing rates of 100%. The chief medicinal of QBZPY, including Lianqiao (Fructus Forsythiae), Xixiancao (Herba Siegesbeckiae) and Niubangzi (Fructus Arctii), can down-regulate multiple signaling pathways related with virus infection, immune response, and epithelial damage. RT-qPCR results indicated that compared with the model group, the QBZPY group down-regulated the mRNA expression of Il1b, tumor necrosis factor (Tnf), Cxcl2, Cxcl10, Ccl2, Nos2 and Ptgs2 induced by LPS in RAW264.7 cells (P<0.05 or P<0.01). ConclusionBased on targeted transcriptome analysis, expert experience in TCM and artificial intelligence, QBZPY has been developed for the treatment of nonsevere COVID-19. The ethanol extract of QBZPY has been found to inhibit mRNA expression of several pro-inflammatory genes in a cellular inflammation model.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 79-90, 2024.
Article in Chinese | WPRIM | ID: wpr-1003411

ABSTRACT

ObjectiveTo explore the mechanism of Bushen Huoxue enema in treating the rat model of kidney deficiency and blood stasis-thin endometrium (KDBS-TE) by transcriptome sequencing. MethodThe rat model of KDBS-TE was established by administration of tripterygium polyglycosides tablets combined with subcutaneous injection of adrenaline. The pathological changes of rat endometrium in each group were then observed. Three uterine tissue specimens from each of the blank group, model group, and Bushen Huoxue enema group were randomly selected for transcriptome sequencing. The differentially expressed circRNAs, lncRNAs, and miRNAs were screened, and the disease-related specific competitive endogenous RNA (ceRNA) regulatory network was constructed. Furthermore, the gene ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed for the mRNAs in the network. ResultCompared with the blank group, the model group showed endometrial dysplasia, decreased endometrial thickness and endometrial/total uterine wall thickness ratio (P<0.01), and differential expression of 18 circRNAs, 410 lncRNAs, and 7 miRNAs. Compared with the model group, the enema and estradiol valerate groups showed improved endometrial morphology and increased endometrial thickness and ratio of endometrial to total uterine wall thickness (P<0.05). In addition, 21 circRNAs, 518 lncRNAs, and 17 miRNAs were differentially expressed in the enema group. The disease-related specific circRNA-miRNA-mRNA regulatory network composed of 629 nodes and 664 edges contained 2 circRNAs, 34 miRNAs, and 593 mRNAs. The lncRNA-miRNA-mRNA regulatory network composed of 180 nodes and 212 edges contained 5 lncRNAs, 10 miRNAs, and 164 mRNAs. The mNRAs were mainly enriched in Hippo signaling pathway, autophagy-animal, axon guidance, etc. ConclusionBushen Huoxue enema can treat KDBS-TE in rats by regulating specific circRNAs, lncRNAs, and miRNAs in the uterus and the ceRNA network.

3.
Article | IMSEAR | ID: sea-223533

ABSTRACT

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food componentsacross four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case?control studies are required to support our current findings.

4.
Indian J Exp Biol ; 2023 Mar; 61(3): 214-223
Article | IMSEAR | ID: sea-222589

ABSTRACT

Karnal bunt of wheat is an important quarantine disease that interrupts India’s wheat trade in the international market. The whole transcriptome of germinating and dormant teliospores of Tilletia indica was performed using the RNA Seq approach to identify germination-related genes. Approximately 63 million reads were generated using the RNA sequencing by the Illumina NextSeq500 platform. The high-quality reads were deposited in NCBI SRA database (accession: PRJNA522347). The unigenes from the pooled teliospores were 16,575 having unigenes length of 28,998,753 bases. The high-quality reads of germinating teliospores mapped on to 21,505 predicted CDSs. 9,680 CDSs were common between dormant and germinating teliospores of T. indica. 11,825 CDSs were found to be in germinating teliospores while only 91 were unique in dormant spores of pathogen. The pathway analysis showed the highest number of pathways was found in germinating spores than dormant spores. The highest numbers of CDSs were found to be associated with translation (431 in number), transport and catabolism (340), signal transduction (326), and carbohydrate metabolism (283). The differential expression analysis (DESeq) of germinating and dormant teliospores showed that 686 CDS were up-regulated and 114 CDS were down-regulated in the germinating teliospores. Significant germination-related genes in the spores were validated using qPCR analysis. Ten genes viz. Ti3931, Ti6828, Ti7098, Ti7462, Ti7522, Ti 9289, Ti 8670, Ti 7959, Ti 7809,and Ti10095 were highly up-regulated in germinated teliospores which may have role in germination of spores.Further, these differentially expressed genes provide insights into the molecular events. This first study of transcriptome will be helpful to devise better management strategies to manage Karnal bunt disease.

5.
Acta cir. bras ; 38: e380923, 2023. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429538

ABSTRACT

Purpose: To investigate the role and mechanism of ß1,3-N-acetylglucosaminyltransferase-3 gene (B3GNT3) in esophageal cancer (ESCA). Methods: The starBase database was used to evaluate the expression of B3GNT3. B3GNT3 function was measured using KYSE-30 and KYSE-410 cells of esophageal squamous cell carcinoma (ESCC) cell lines. The mRNA levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8, clone formation assay and transwell assay were used to detect the changes of proliferation, invasion and migration. Results: B3GNT3 expression was higher in ESCA tissues than in normal tissues. The overall survival rate of ESCA patients with high B3GNT3 expression was lower than that of ESCA patients with low B3GNT3 expression. In vitro functional experiments showed that the proliferation ability, migration and invasion ability of KYSE-30 and KYSE-410 cells with B3GNT3 interference were lower than those of the control, and the overexpression of B3GNT3 had the opposite effect. After silencing B3GNT3 expression in ESCC cell lines, the growth of both cell lines was inhibited and the invasiveness was decreased. Knockdown of B3GNT3 reduced the growth rate and Ki-67 expression level. Conclusion: B3GNT3, as an oncogene, may promote the growth, invasion and migration of ESCC cell.


Subject(s)
Oncogenes , N-Acetylglucosaminyltransferases/analysis , Cell Migration Assays , Transcriptome , Esophageal Squamous Cell Carcinoma , Esophageal Neoplasms/physiopathology
6.
International Journal of Biomedical Engineering ; (6): 212-220, 2023.
Article in Chinese | WPRIM | ID: wpr-989341

ABSTRACT

Objective:To analyze the patterns of intercellular communication in facioscapulohumeral muscular dystrophy (FSHD) by single-cell nuclear transcriptome sequencing.Methods:Bilateral asymmetrical lesions mouth orbicular muscle of two patients with FSHD and mouth orbicular muscle of two healthy patients were selected. Six samples were obtained, and were divided into control group, mild group and severe group. The normal orbicularis muscle sample was collected from 2 healthy individuals (the control group). The muscle samples in the mild group were from two patients with relatively normal muscle sides, and the samples in the severe group were from two patients with more severe muscle damage sides. Single-cell nuclear transcriptome sequencing was performed on all cells of the three groups. Reduced dimension clustering and cell definition were performed to identify differentially expressed genes and enrichment pathways. Intercellular communication patterns among major cell types and key signaling pathways were explored by cellular communication analysis.Results:Differential gene expression analysis of FSHD bilateral muscle samples identified 46 functionally differentially expressed genes associated with the disease in different cell types, related to apoptosis, oxidative stress, immune inflammation, and muscle function. Intercellular communication was generally increased in the severe group. Fibro-adipogenic progenitors (FAPs) and macrophages are important signaling sources in the abnormal muscle microenvironment of FSHD and are closely associated with disease progression. There are six unique signaling pathways in the mild group, including bone morphogenetic proteins (BMP), transforming growth factor-β (TGF-β), CXC motif chemokine ligand (CXCL), adhesion G protein-coupled receptor E5 (ADGRE5), interleukin-16 (IL-16), and wingless-type MMTV integration site family (WNT) signaling pathways. These signaling pathways are mainly involved in the interaction between macrophages, FAPs, and adipocytes and may be involved in the regulation of fat deposition and fibrosis changes in the diseased muscle.Conclusions:Single-cell nuclear transcriptome sequencing provides a relatively comprehensive pattern of intercellular communication between key cell types in FSHD, providing an appropriate reference for understanding the intercellular regulatory mechanisms of the FSHD muscle microenvironment.

7.
Journal of Leukemia & Lymphoma ; (12): 147-152, 2023.
Article in Chinese | WPRIM | ID: wpr-988965

ABSTRACT

Objective:To investigate the differences among targeted capture high depth sequencing (Panel-seq), transcriptome sequencing (RNA-seq) and traditional detection methods in cytogenetic and molecular genetic typing of childhood B-cell acute lymphoblastic leukemia (B-ALL) and their significances.Methods:The clinical data of 152 newly diagnosed childhood B-ALL cases in Guangzhou Women and Children's Medical Center from September 2020 to December 2021 were retrospectively analyzed. Along with traditional cytogenetic and molecular detection methods including karyotyping, fluorescence in situ hybridization (FISH) and 43 kinds of fusion gene quantitative screening for traditional cells and molecular genetic detection, both Panel-seq and RNA-seq were also performed. Panel-seq covered more than 600 genes with common mutations in hematological tumors, from which fusion genes and gene mutations were both analyzed. RNA-seq was used to analyze fusion genes, gene mutations, gene expression, and copy number variation at the chromosome level. High hyperdiploid karyotype was estimated by using gene expression profile clustering and copy number variations. The cytogenetic typing results of all detection methods were also analyzed.Results:Among 152 patients, 93 cases were males and 59 cases were females, with the median age of 4.0 years (0.8-13.0 years). The median blast cell ratio was 0.855 (0.215-0.965). The traditional detection methods could identify 4 cases (2.6%) with BCR-ABL1, 2 cases (1.3%) with CRLF2 gene-related fusion, 27 cases (17.8%) with ETV6-RUNX1, 1 case (0.7%) with iAMP21, 5 cases (3.3%) with MLL rearrangement, 8 cases (5.3%) with TCF3-PBX1 and 22 cases (14.5%) with high hyperdiploid karyotype. Panel-seq could identify 4 cases (2.6%) with BCR-ABL1, 2 cases (1.3%) with CRLF2 gene-related fusions, 27 cases (17.8%) with ETV6-RUNX1, 3 cases (2.0%) with MEF2D gene-related fusions, 1 case (0.7%) with MEIS1-FOXO1, 5 cases (3.3%) with MLL rearrangement, 5 cases (3.3%) with PAX5 gene-related fusions, 8 cases (5.3%) with TCF3-PBX1 fusions, 4 cases (2.6%) with ZNF384 gene-related fusions, and 2 cases (1.3%) with IKZF1 N159Y mutations. Among 152 patients, 1 case with MLL rearrangement didn't receive RNA-seq detection because of sample quality; in other 151 B-ALL cases, 1 case (0.7%) with ACIN1-NUTM1, 4 cases (2.6%) with BCR-ABL1, 3 cases (2.0%) with CRLF2 gene-related fusions, 8 cases (5.3%) with DUX4 gene-related fusions, 27 cases (17.9%) with ETV6-RUNX1, 3 cases (2.0%) with MEF2D gene-related fusions, 1 case (0.7%) with MEIS1-FOXO1, 4 cases (2.6%) with MLL rearrangement, 5 cases (3.3%) with PAX5 gene-related fusions, 1 case (0.7%) with ZMIZ1-ABL1, 8 cases (5.3%) with TCF3-PBX1,4 cases (2.6%) with ZNF384 gene-related fusions, 61 cases (40.4%) with hyperdiploid karyotypes, and 2 cases (1.3%) with IKZF1 N159Y mutations were detected; RNA-seq had obvious advantage in detecting fusion gene and hyperdiploid karyotype. The cytogenetic and molecular genetic typing rates of traditional method, Panel-seq and RNA-seq were 45.4% (69/152), 40.1% (61/152) and 87.4% (132/151), respectively. The combination of the three could identify 89.5% (136/152) of childhood B-ALL patients.Conclusions:The combination of Panel-seq and RNA-seq can increase the detection rate of genetic abnormality in childhood B-ALL, which provides a more accurate molecular genetic classification for B-ALL and the basis for treatment guideline and prognosis judgement.

8.
Journal of Environmental and Occupational Medicine ; (12): 1005-1013, 2023.
Article in Chinese | WPRIM | ID: wpr-988742

ABSTRACT

Background Paraquat (PQ) is one of the most widely used herbicides in the world and a risk factor for Parkinson's disease (PD), but the mechanisms underlying PD are poorly understood. Single-cell RNA sequencing (scRNA-seq) technology can study cellular heterogeneity at genetic level, providing insights into the pathogenesis of PQ-induced PD. Objective To analyze the brain cell grouping of PQ-infected mice and the biological processes involved in the subpopulation of PD-like changes cells by scRNA-seq, and to provide clues for revealing potential mechanisms of PQ-induced PD-like changes in mouse brains. Methods Six male 6-week-old C57BL/6 mice were randomly divided into a control group and an experimental group, three mice in each group, and were intraperitoneally injected with 0 (saline) and 10.0 mg·kg−1 PD respectively, once every two days, for 10 consecutive injections for modeling. After infection, mouse brains were taken and scRNA-seq was performed. Cell segmentation was performed according to gene expression characteristics of different cell types, PD-related cell subsets were screened by bioinformatics tools, and gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), protein interaction network analysis, and transcription factor prediction were performed on their characteristic genes. Finally, GO and KEGG analyses were performed on the differential genes of PD-associated cell subsets between the PQ-treated group and the control group, and the biological processes in which these genes may participate were analyzed. Results The sequencing data met quality control standards, a total of 55779 cells were obtained, and all cell dimensionality reduction analysis results showed that they could be further divided into 37 clusters, including 5 major cell types. Based on the KEGG analysis of the top 20 characteristic genes of each subpopulation, the specifically expressed Cluster 33 subpopulation (dopaminergic neurons) was screened and found to be significantly associated with PD. The results of GO analysis showed that the biological function of this subpopulation mainly enriched neurotransmitter transport and regulation. The results of GSEA analysis showed that the tyrosine metabolic pathway and the ligand-receptor interaction pathway of neural activity in brain tissues were significantly enriched. The analysis of transcriptional regulatory networks showed that 39 transcription factors were expressed differently. The metabolic pathway of the dopamine neuronal subset, endocytosis, Ras-associated protein 1 (Rap1) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway were all affected by PQ exposure, according to further analysis of its effects on this subpopulation. The GO analysis showed that differential genes were involved in biological processes such as ion transport and synaptic assembly regulation, and were involved in the cellular component formation of cytoplasm and synapses. Conclusion This study has initially mapped the transcriptome of single cells in the mouse brain after PQ exposure, and screened out the specific expression of Cluster 33 subgroup (dopaminergic neurons), which is significantly correlated with PD, and its biological function changes may be one of the mechanisms of PD-like changes in the mouse brain induced by PQ.

9.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 758-767, 2023.
Article in Chinese | WPRIM | ID: wpr-988721

ABSTRACT

objectiveTo explore the specific molecular mechanism of neuronal apoptosis induced by ATM inactivation. MethodsCGNs matured 7 days in vitro were cultured 8 h with 25 K, 5 K or 25 K medium containing ATM-specific inhibitors (Ku55933, 10 µmol/L; Ku60019, 15 µmol/L) for Hoechst stain and apoptosis analysis, or cultured for different lengths of time (2, 4, 8 h) to detect the protein expression levels of ATM, caspase-3 and cleaved caspase-3 by Western blotting. ATM and GADD45α specific siRNA was transfected into C6 cells and CGNs, and its interference efficiency was verified by q-PCR and Western blotting. CGNs matured for 5 days in vitro were transfected with ATM specific siRNA and pCMV-EGFP by calcium phosphate for 48 h, Hoechst staining and apoptosis analysis were performed. CGNs matured for 7 days in vitro were treated with 25 K medium containing ATM specific inhibitors for 8 h, transcriptome sequencing, differential expression gene identification and pathway enrichment analysis were performed. CGNs matured for 5 days in vitro were co-transfected with GADD45α specific siRNA and pCMV-EGFP by calcium phosphate for 48 h, then treated with 5 K or 25 K medium containing 15 µmol/L Ku6 for 8 h. Hoechst staining and apoptosis analysis were performed. ResultsCompared with the 25 K, CGNs nuclear pyknosis rate, cleaved Caspase-3 and ATM protein expression level were increased in the 5 K and ATM-specific inhibitor groups. The mRNA and protein expression levels of ATM and GADD45α were effectively reduced after transfection of ATM and GADD45α specific siRNA in C6 cells and CGNs. Compared with control, CGNs transfected with ATM specific siRNA showed a higher nuclear pyknosis rate. Totally 835 genes were identified to be up-regulated and 848 genes to be down-regulated in the Ku55933 treatment group; 454 genes were identified to be up-regulated and 314 genes to be down-regulated in the Ku6 treatment group; 274 genes were co-up regulated in the Ku5 and Ku60019 treatment groups, while 179 genes were co-down-regulated in the Ku5 and Ku6 treatment groups and the expression of ATM downstream target GADD45α was upregulated. The enrichment results showed that TNF signaling pathway, NF-κB signaling pathway and Apoptosis signaling pathway were significantly enriched. Compared with control, mRNA and protein expression levels of GADD45α were increased in inhibitor treatment and 5 K, while knocking down GADD45α resulted in a decrease in nuclear pyknosis rate in the Ku60019 and 5 K treatment group. ConclusionLoss of ATM activity induces GADD45α-dependent cerebellar granular neuronal apoptosis.

10.
Cancer Research on Prevention and Treatment ; (12): 573-580, 2023.
Article in Chinese | WPRIM | ID: wpr-986233

ABSTRACT

Objective To investigate the biological role of LINC01614 in non-small cell lung cancer A549 cells and its drug resistance-related mechanism. Methods The CRISPR/Cas9 technology was used to construct the A549 cell model with knockdown of LINC01614. Transcriptome sequencing was performed on A549 cells knocked down with LINC01614. We validated the transcriptomic differential genes MCAM and ABCC3 at the gene level and MCAM at the protein level, detected the IC50 changes of A549 cells after knockdown of LINC01614 under the effect of different concentrations of cisplatin, and detected the effect of knockdown of LINC01614 on the migration ability of A549 cells. Results Of the 2 713 DEGs after knockdown of LINC01614, a total of 1 626 genes were up-regulated and 1, 087 genes were down-regulated. GO analysis showed that DEGs were associated with intracellular signaling, cell adhesion, and so on. Meanwhile, the KEGG analysis showed that DEGs were associated with the Wnt signaling pathway, TGF-β signaling pathway, and Rap1 signaling pathway. Selection of drug resistance-associated gene ABCC3 from DEGs for validation with MCAM: qRT-PCR results showed that knockdown of LINC01614 significantly down-regulated the expression of MCAM (P<0.05) and upregulated the expression of ABCC3 on A549 cells (P<0.05). After knockdown of LINC01614, the protein expression of MCAM, was significantly decreased in A549 cells (P<0.05); the IC50 of A549 cells to cisplatin was significantly increased (P<0.05); and the scratch healing rate of A549 cells was also significantly decreased (P<0.05). Conclusion LINC01614 may be associated with the proliferation, invasion, and apoptotic pathways of A549 cells. In addition, LINC01614 may exert its migration ability through MCAM and chemoresistance to cisplatin through ABCC3.

11.
Cancer Research on Prevention and Treatment ; (12): 458-462, 2023.
Article in Chinese | WPRIM | ID: wpr-986216

ABSTRACT

Cancer immunotherapy is one of the most promising biological therapies. The dynamic changes of the immune microenvironment of heterogeneous tumors are critical factors in determining the interaction and therapeutic efficacy between tumor and immune microenvironment. Therefore, quantitative analysis of its constituent cells, related genes, and phenotypes in real time is of great importance. The methods used to analyze tumor immune microenvironment include immunohistochemistry, flow cytometry and so on. With the development of next-generation sequencing technology, transcriptome RNA sequencing data analysis has become one of the important methods to determine the composition of tumor immune microenvironment. This article focuses on the common methods of bulk RNA sequencing data analysis and related research progress.

12.
International Eye Science ; (12): 449-455, 2023.
Article in Chinese | WPRIM | ID: wpr-964247

ABSTRACT

AIM: To explore the key genes and molecular markers involved in the retinoblastoma development through bioinformatics.METHODS: The mRNA microarray datasets from the Gene Expression Omnibus(GEO)database were obtained, and the differentially expressed gene(DEG)between retinoblastoma cell lines and normal retinal pigment epithelial(RPE)cell lines were analyzed through gene ontology(GO)and KEGG enrichment analysis. To screen key genes, establish protein-protein interaction(PPI)network, and use receiver operating characteristic(ROC)curve to assess clinical diagnostic efficacy. The RNA expressions of key genes in retinoblastoma cell lines and normal RPE cell lines were compared by qRT-PCR.RESULTS: A total of 121 DEGs were obtained from the retinoblastoma dataset of GSE97508 and GSE110811. KEGG pathway analysis showed that DEG were enriched in phototransduction, cell cycle, and p53 signaling pathways. A total of 9 key genes, including MCM6, DTL, UBE2T, TOP2A, NUSAP1, CENPK, RRM2, RLBP1, and RHO, were obtained from the intersection of PPI network analysis and the top 30 DEG from each dataset. The differentially expressed 9 key genes were verified in GSE24673. ROC analysis showed that the area under the curve(AUC)for UBE2T, RRM2, and RHO was ≥80%, and there was a statistical significance(P>0.05). The mRNA level of UBE2T and RRM2 in retinoblastoma was significantly higher than APRE-19 cell line, while the mRNA level of RHO was significantly lower than that of ARPE-19 cell line.CONCLUSION: UBE2T, RRM2, and RHO may be served as potential molecular markers and potential therapeutic targets for retinoblastoma.

13.
International Eye Science ; (12): 369-374, 2023.
Article in Chinese | WPRIM | ID: wpr-964231

ABSTRACT

AIM: To investigate the expression changes of MMP-12 during the long-term axon regeneration induced by the lens injury after the optic nerve clamp trauma in sprague-dawley(SD)rats.METHODS: The optic nerve injury model and lens injury model of SD rats were established, and the 24 experimental animals were divided into control group; lens injury group; optic nerve injury group; lens injury combined with optic nerve injury group, with 6 rats in each group. Reference transcriptome sequencing was used to analyze the expression changes of differentially expressed genes in the injured optic nerve region, and relevant differentially expressed genes with high expression were screened. Quantitative real-time polymerase chain reaction(qRT-PCR)and enzyme-linked immunosorbent assay(ELISA)were used to quantify the expression changes of matrix metalloproteinase-12(MMP-12)in the injured optic nerve region.RESULTS: The Principal Component Analysis of transcriptome sequencing indicated that lens injury combined with optic nerve injury was the principal component of gene expression change. Analysis of gene expression differences showed that the expression of MMP-12 gene was up-regulated in the lens injury combined with optic nerve injury group. The mRNA expression level of MMP-12 in the lens injury combined optic nerve injury group was up-regulated compared with the control group, the optic nerve injury group and the lens injury group at 14d and 21d after successful modeling(P<0.05). At 7, 28d, there was no difference in expression among all groups. The protein expression level of MMP-12 in the lens injury combined with optic nerve injury group was up-regulated compared with the control group and optic nerve injury group at 7, 14 and 21d after successful modeling(P<0.05), and it was up-regulated in the lens injury group combined with optic nerve injury group compared with optic nerve injury group at 21d(P<0.05). At 28d, there was no difference in expression among all groups.CONCLUSION: The up-regulated expression of MMP-12 may be involved in the long-term regeneration of the optic nerve after lens injury.

14.
Chinese Journal of Biotechnology ; (12): 3015-3036, 2023.
Article in Chinese | WPRIM | ID: wpr-981246

ABSTRACT

To explore the differentially expressed genes (DEGs) related to biosynthesis of active ingredients in wolfberry fruits of different varieties of Lycium barbarum L. and reveal the molecular mechanism of the differences of active ingredients, we utilized Illumina NovaSeq 6000 high-throughput sequencing technology to conduct transcriptome sequencing on the fruits of 'Ningqi No.1' and 'Ningqi No.7' during the green fruit stage, color turning stage and maturity stage. Subsequently, we compared the profiles of related gene expression in the fruits of the two varieties at different development stages. The results showed that a total of 811 818 178 clean reads were obtained, resulting in 121.76 Gb of valid data. There were 2 827, 2 552 and 2 311 DEGs obtained during the green fruit stage, color turning stage and maturity stage of 'Ningqi No. 1' and 'Ningqi No. 7', respectively, among which 2 153, 2 050 and 1 825 genes were annotated in six databases, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and clusters of orthologous groups of proteins (KOG). In GO database, 1 307, 865 and 624 DEGs of green fruit stage, color turning stage and maturity stage were found to be enriched in biological processes, cell components and molecular functions, respectively. In the KEGG database, the DEGs at three developmental stages were mainly concentrated in metabolic pathways, biosynthesis of secondary metabolites and plant-pathogen interaction. In KOG database, 1 775, 1 751 and 1 541 DEGs were annotated at three developmental stages, respectively. Searching the annotated genes against the PubMed database revealed 18, 26 and 24 DEGs related to the synthesis of active ingredients were mined at the green fruit stage, color turning stage and maturity stage, respectively. These genes are involved in carotenoid, flavonoid, terpenoid, alkaloid, vitamin metabolic pathways, etc. Seven DEGs were verified by RT-qPCR, which showed consistent results with transcriptome sequencing. This study provides preliminary evidences for the differences in the content of active ingredients in different Lycium barbarum L. varieties from the transcriptional level. These evidences may facilitate further exploring the key genes for active ingredients biosynthesis in Lycium barbarum L. and analyzing their expression regulation mechanism.


Subject(s)
Flavonoids/metabolism , Fruit/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Lycium/metabolism , Metabolic Networks and Pathways , Transcriptome
15.
Chinese Journal of Biotechnology ; (12): 2897-2913, 2023.
Article in Chinese | WPRIM | ID: wpr-981239

ABSTRACT

MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D. delavayi MADS-box gene family from the perspective of molecular evolution.


Subject(s)
MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/genetics , Plant Proteins/metabolism , Gene Expression Profiling
16.
Chinese Herbal Medicines ; (4): 310-316, 2023.
Article in English | WPRIM | ID: wpr-982505

ABSTRACT

OBJECTIVE@#The barks, leaves, and branches of Cinnamomum cassia have been historically used as a traditional Chinese medicine, spice, and food preservative, in which phenylpropanoids are responsible compounds. However phenylpropanoid biosynthesis pathways are not clear in C. cassia. We elucidated the pathways by descriptive analyses of differentially expressed genes related to phenylpropanoid biosynthesis as well as to identify various phenylpropanoid metabolites.@*METHODS@#Chemical analysis, metabolome sequencing, and transcriptome sequencing were performed to investigate the molecular mechanisms underlying the difference of active components content in the barks, branches and leaves of C. cassia.@*RESULTS@#Metabolomic analysis revealed that small amounts of flavonoids, coumarine, and cinnamaldehyde accumulated in both leaves and branches. Transcriptome analysis showed that genes associated with phenylpropanoid and flavonoid biosynthesis were downregulated in the leaves and branches relative to the barks. The observed differences in essential oil content among the three tissues may be attributable to the differential expression of genes involved in the phenylpropanoid and flavonoid metabolic pathways.@*CONCLUSION@#This study identified the key genes in the phenylpropanoid pathway controling the flavonoid, coumarine, and cinnamaldehyde contents in the barks, branches and leaves by comparing the transcriptome and metabolome. These findings may be valuable in assessing phenylpropanoid and flavonoid metabolites and identifying specific candidate genes that are related to the synthesis of phenylpropanoids and flavonoids in C. cassia.

17.
Chinese Herbal Medicines ; (4): 298-309, 2023.
Article in English | WPRIM | ID: wpr-982495

ABSTRACT

OBJECTIVE@#Diterpenoids with a wide variety of biological activities from Anoectochilus roxburghii, a precious medicinal plant, are important active components. However, due to the lack of genetic information on the metabolic process of diterpenoids in A. roxburghii, the genes involved in the molecular regulation mechanism of diterpenoid metabolism are still unclear. This study revealed the complex metabolic genes for diterpenoids biosynthesis in different organs of A. roxburghii by combining analysis of transcriptomics and metabolomics.@*METHODS@#The differences in diterpenoid accumulation in roots, stems and leaves of A. roxburghii were analyzed by metabonomic analysis, and its metabolic gene information was obtained by transcriptome sequencing. Then, the molecular mechanism of differential diterpenoid accumulation in different organs of A. roxburghii was analyzed from the perspective of gene expression patterns.@*RESULTS@#A total of 296 terpenoid metabolites were identified in the five terpenoid metabolic pathways in A. roxburghii. There were 38, 34, and 18 diterpenoids with different contents between roots and leaves, between leaves and stems, and between roots and stems, respectively. Twenty-nine metabolic enzyme genes with 883 unigenes in the diterpenoid synthesis process were identified, and the DXS and FDPS in the terpenoid backbone biosynthesis stage and CPA, GA20ox, GA3ox, GA2ox, and MAS in the diterpenoid biosynthesis stage were predicted to be the key metabolic enzymes for the accumulation of diterpenoids. In addition, 14 key transcription factor coding genes were predicted to be involved in the regulation of the diterpenoid biosynthesis. The expression of genes such as GA2ox, MAS, CPA, GA20ox and GA3ox might be activated by some of the 14 transcription factors. The transcription factor NTF-Y and PRE6 were predicted to be the most important transcription factors.@*CONCLUSION@#This study determined 29 metabolic enzyme genes and predicted 14 transcription factors involved in the molecular regulation mechanism of diterpenoid metabolism in A. roxburghii, which provided a reference for the further study of the molecular regulation mechanism of the accumulation of diterpenoids in different organs of A. roxburghii.

18.
Chinese Herbal Medicines ; (4): 240-250, 2023.
Article in English | WPRIM | ID: wpr-982490

ABSTRACT

OBJECTIVE@#To clarify the anti-depressive potential mechanisms of Kaixin Powder (KP), a drug that helps to prevent and treat depression and other mentaldiseases, from genome-wide transcriptome profiling.@*METHODS@#Transcriptome and KEGG pathway analysis were conducted on the hippocampus of depressed rats, then the differentially expressed genes were validated and serum concentration of lipid parameters were identified by enzymatic assays. Furthermore, high-fat diets induced depression-like behaviors in Syrian golden hamsters were conducted to verify the predicted molecular mechanisms acquired from the transcriptome analysis.@*RESULTS@#Transcriptome results revealed that the 24 differentially expressed genes (DEGs) in chronic mild stress (CMS) rats could be reversed after two weeks of KP treatment. The mechanisms of KP in treating depression firstly involved the regulation of several pathology modules, including lipid metabolism, synapse function and inflammation. KP could regulate imbalances of lipid homeostasis in high-fat diet induced depressive symptoms. Furthermore, it was validated that cholesterol metabolism dysfunction can be ameliorated by KP, which was correlated with upregulation of the AdipoR1-BDNF (brain-derived neurotrophic factor) co-regulatory pathway.@*CONCLUSION@#Taken together, our results demonstrated that KP not only alleviates depression via traditional mental illness targets, but it may also simulates the cholesterol metabolism and adiponectin signaling with multi-target characteristics.

19.
Journal of Central South University(Medical Sciences) ; (12): 829-836, 2023.
Article in English | WPRIM | ID: wpr-982353

ABSTRACT

OBJECTIVES@#This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/β-catenin and chemokine signaling pathways.@*METHODS@#PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/β-catenin and chemokine signal pathways was investigated.@*RESULTS@#Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/β-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while β-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05).@*CONCLUSIONS@#There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/β- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.


Subject(s)
Humans , DNA Methylation , Transcriptome , beta Catenin , Leukocytes, Mononuclear , Ligands , DNA , RNA, Messenger/genetics
20.
Journal of Zhejiang University. Science. B ; (12): 15-31, 2023.
Article in English | WPRIM | ID: wpr-971466

ABSTRACT

Long non-coding RNAs (lncRNAs) play a significant role in maintaining tissue morphology and functions, and their precise regulatory effectiveness is closely related to expression patterns. However, the spatial expression patterns of lncRNAs in humans are poorly characterized. Here, we constructed five comprehensive transcriptomic atlases of human lncRNAs covering thousands of major tissue samples in normal and disease states. The lncRNA transcriptomes exhibited high consistency within the same tissues across resources, and even higher complexity in specialized tissues. Tissue-elevated (TE) lncRNAs were identified in each resource and robust TE lncRNAs were refined by integrative analysis. We detected 1 to 4684 robust TE lncRNAs across tissues; the highest number was in testis tissue, followed by brain tissue. Functional analyses of TE lncRNAs indicated important roles in corresponding tissue-related pathways. Moreover, we found that the expression features of robust TE lncRNAs made them be effective biomarkers to distinguish tissues; TE lncRNAs also tended to be associated with cancer, and exhibited differential expression or were correlated with patient survival. In summary, spatial classification of lncRNAs is the starting point for elucidating the function of lncRNAs in both maintenance of tissue morphology and progress of tissue-constricted diseases.


Subject(s)
Humans , Gene Expression Profiling , Neoplasms/genetics , Organ Specificity , RNA, Long Noncoding/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL